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Are Human Studies Possible?
Some Thoughts on the Mutation Component
and Population Monitoring
by Carter Denniston*

The concept of the mutation component ofa genetic trait is discussed and its relation to
heritability investigated. It is found that for qualitative traits held in the population by
opposing directional selection and mutation, the mutation component equals the broad
sense heritability. The mutational component ofa quantitative trait with an intermediate
optimum is found generally to be between half and one times the (narrow sense) heri-
tability of the character. Although more work on this matter is required, the finding of a
relationship between mutation component and heritability should allow us to make
better predictions regarding the likely impact of an increased mutation rate on the
human population. Some statistical problems relevant to the detection of an increased
mutation rate are also discussed.

Committees attempting to assess the effect of
an increased mutation rate on the human popula-
tion always face the difficulty posed by what
BEIR III (1) called "irregularly inherited" disor-
ders. They state:

"The population survey of British Columbia reported
that at least 9% of live born humans will be seriously
handicapped at some time during their life times by
genetic disorders of complex etiology, manifested as
congenital malformations, anomalies expressed later,
or constitutional and degenerative diseases. This, the
largest category of genetic disorder ... we refer to as
'irregularly inherited' disorders."

They go on:
"An estimate of the number of induced irregularly
inherited disorders present at equilibrium must take
into account the proportion of the incidence of these
disorders that would vary directly with the mutation
rate, a quantity that BEIR I called the 'mutational
component.' More precisely, if the equilibrium inci-
dence, I, of a disorder is a linear function of the
mutation rate, m, i.e., I = a + bm, then we define the
mutational component to be MC = bm/(a + bm), in
which case the relative increase of the disorder inci-
dence after an increase in the mutation rate from m
to say, m(l + k) is (I' - I)II = (MC)k. Each disorder
may have its own mutational component, and a class
of disorders, such as irregularly inherited disorders,
its average mutational component."
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I would like to discuss the idea of "mutation
component" today; it may turn out to be a more
useful concept than we realized when the report
was written.
Crow and Denniston (2) define the mutation

component Mi of a disorder i, such that its impact
changes from Ii to Ij(l + Miki) when the mutation
rate changes from pi to gi(l + ki). Then the total
impact, I = Eli, of a group of disorders changes
from I to I(1 + Mk) when the total mutation rate
changes from U to U(1 + k), where U = Epi is the
total mutation rate, k = S>iki/Epi is the average
(mutation weighted) increment; M = EIikiMilIk is
the total mutation component.
From these definitions we find that the muta-

tion component for disorder i is
Mi= (gJ/II)(AJjIAgi)

For small increments in the mutation rate, it may
be convenient to express this definition in terms
of differentials so that Mi = dln I/dln j, showing
its relation to the concept of elasticity common in
economic theory.
The "impact" of a disorder is meant to refer to

its detrimental effect on human well-being, mea-
sured simply as incidence, load or perhaps some
more relevant index of human suffering. I shall
assume, here, that such an index is proportional
to incidence or decrease in fitness; the proportion-
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Table 1.

Genotype AA AB AB BB
Frequency p2 2pqi 2pq(1 - i) q2
Fitness 1 - s 1 - s 1 1

ality contant may, of course, vary from one disor-
der to another.
For simple monogenic disorders, the calcula-

tion of mutation component is straightforward.
Consider an autosomal locus segregating two al-
leles, A and B (Table 1), where is a measure of
incomplete penetrance or incomplete dominance.
We then have that the gene frequency at equilib-
rium between mutation and selection is given by

p 2s(l 2Tr) + Isn(l + p) 0

where is the rate ofmutation from B to A. If =

0, A is recessive and P2 = I1S; if = 1, A is
dominant and 24 - 2p/s; more generally, 24 - p/
st, as long as selection is acting primarily on
heterozygotes. In any event the mutation load
ranges between and 2it (3). We see that both the
incidence and load of such disorders, and there-
fore their impact on human well-being, are di-
rectly proportional to the mutation rate. The mu-
tation component is thus equal to one. If all cases
are not of genetic origin, then the incidence is of
the form a + bp, where a represents the pheno-
copies. The mutation component is bpl(a + bi),
which corresponds to the broad sense heritability
of the disorder if one considers it as a 0, 1 trait.

It appears that for a large class of disorders
held in the population by opposing directional
selection and mutation, the mutation component
is equal to the broad sense heritability (2). This
conclusion can be upset by genotype x environ-
ment interactions and, possibly, by arbitrary
gene interactions and linkage; but enough special
cases have been looked at to suggest fairly wide
applicability.

It is often the case that an equilibrium fre-
quency is a function of more than one mutation
rate, e.g., at an X-linked locus with mutation
rates differing in eggs and sperm, when the trait
under consideration involves more than one gene,
or if a mutagen affects forward and backward
mutation rates differently. We may extend our

concept of mutation component as follows.
We define the "partial mutation component" of a

trait relative to mutation rate j as Mj = (/Jl)PIhaVaj.
With this definition when

-j* pj(1 + kj)
we have

Al/I = I (aI/adj) jk,/I
= E Miki

For example, the equilibrium frequency for a
recessive X-linked trait is approximately

I = (2m1 + m2)/s
where ml and m2 are the mutation rates in eggs
and sperm, respectively, and s is the selection
coefficient. If the mutation rates are changed in
the proportions k1 and k2, then

M= 2ml/(2ml + M2)
and

M2= m2/(2ml + M2)
so that

Al/I = Mlkl + M2k2
= (2mlkl + M2k2)/(2m, + M2)

Disorders held in the population by opposing
selection forces, e.g., sickle cell anemia, are not
expected to respond to an increase in the muta-
tion rate. For example, the mutation component
of a trait like sickle cell anemia is M - 2misq,
where m is the mutation rate to the sickle cell
gene, 1 - s is the fitness of the normal homozy-
gote and q is the equilibrium gene frequency of
the S allele. With intermediate values of q, as
long as s is substantially larger than m, we see
that M is quite small.
Many traits, e.g., blood pressure, weight, are

continuous with an optimum and large deviations
from that optimum being highly disadvanta-
geous. What is the mutation component of these
traits? The problem is a difficult one, but we may
make some progress by looking at a specific
model. Kimura (4) has constructed such a model.
He assumes a quantitative character under the
control of many loci at each of which is an infinite
number of alleles acting additively with respect
to the character. There is an optimal phenotype
with respect to fitness and fitness decreases in
proportion to the squared deviation from this
optimum. Under these assumptions, the genetic
load is given by

L = u '2A + uB2 + KVE
where u is the common mutation rate, A =
E(2K±O) 2, B = EJ/(±?)"2; here, i1 is the average
effect of a mutation at the ith locus and x2 is the
average squared effect; K is a measure of the
intensity of selection and VE is the environmental
variance. The mutation component of the load is
then

ML= [(1 + k)1 + 1]-'A + u2B2
(A/h2 + u'1B2)
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where k is the increment in mutation rate and h2
is the narrow heritability. IfB = 0, i.e., mutation
produces deviations in both directions about
equally frequently, we find that

ML= [(1 + k)1 + 1]-1 h2
so that for small k the mutation component is
equal to half the narrow sense heritability. This
same result is derived by Crow and Denniston (2)
under somewhat more general assumptions.
Their conclusion is "for a measured trait deter-
mined by additive genes and independent envi-
ronmental effects, where the fitness (and there-
fore the impact) is proportional to the squared
deviation from the optimum and where selection
is weak, the mutation component for small
changes in the mutation rate is between 1/2 and 1
times the heritability. If the mean is close to the
optimum, the factor is close to 1/2; if the mean is
far from the optimum, the factor becomes larger
and approaches 1 as a limit when selection is
entirely directional.
The model for a quantitative trait is more re-

strictive than that for a qualitative one, and it
has been necessary to resort to more approxima-
tions. The conjecture is that, since the conclusions
for directional selection are robust with respect to
the way the genetic factors interact, this might
also be true for quantitative traits with an inter-
mediate optimum, but this remains to be seen as
further studies along the lines begun by Kimura
and Lande (5-7) are done.
So for qualitative disorders, if the narrow heri-

tability is high (and therefore so is the broad
heritability), the mutation component is large; if
the broad heritability is low (and therefore so is
the narrow heritability), the mutation component
is small. If the broad heritability is large and the
narrow heritability is small, the mutation compo-
nent is indeterminate, but the response to an
increase in the mutation rate is likely to be very
slow so that the impact on the human population
will be spread out over many generations. This
can be seen by considering the meaning of a low
narrow heritability. If the narrow heritability is
low, it means either the environmental variance
is large or much of the genetic variance is due to
genetic interactions, dominance and epistasis.
The result is that a parent's phenotype is less
predictive of his child's, the trait shows an irregu-
lar pattern of inheritance, and the genes respon-
sible are often hidden from the scrutiny of selec-
tion. The approach to the new equilibrium
following an increase in the mutation rate will be
exceedingly slow and most of the damage will
occur far in the future. In fact, if, for example,

improvements in medical treatment keep pace, no
discernable damage may occur at all.
The mutation component of a quantitative

polygenic trait with its mean near the optimum is
approximately half the narrow heritability of the
quantitative character.
So far I have discussed the problem of predict-

ing the likely effect on the population of an in-
creased mutation rate. Equally important is the
detection of such an increase, if and when it
occurs. This is an interesting statistical problem
primarily because of the "when." We don't know
ahead of time when the increase will occur.
The situation is this: We sample from the popu-

lation at regular intervals (e.g., monthly, quar-
terly, yearly) and observe the spontaneous fre-
quency of some trait with a high mutation
component. We wish to detect any shift (usually
an upward shift) in this spontaneous frequency as
quickly as possible, so that its cause can be inves-
tigated and possibly corrected. On the other hand,
we do not want to cry wolf too often. Of course, if
the shift has already occurred and we are told
when it occurred, the problem is a standard one;
we merely compare two samples, before and after
the shift. However, our problem is a sequential
one. Two approaches have been discussed in the
literature and my intention here is simply to
point them out and suggest that some work
should be done to determine which is the more
appropriate to our needs.
The statistical situation may be formulated as

follows: Given observations on the independent
random variables X1, X2, ... , Xn (taken at consec-
utive times) which are distributed according to
the distribution function F(X:Oi), i= 1, . . ., n, we
wish to test the simple hypothesis Ho: 01 = ... =

On = 00 (00 known) against the composite alter-
nativeHl:01= ... = Om=00;,m+i= .. = On
= 00 + A, where both the change point m and the
magnitude of the change A are unknown. And we
want to do our testing sequentially in such a way
as to minimize the average time to rejection ofHo
after a shift has occurred and maximize the aver-
age time to rejection of Ho in the absence of any
shift, subject to the constraints of sample size,
money and so on.
Morton (8), in an interesting article, has sug-

gested using Wald's sequential probability ratio
method for human population monitoring. He
demonstrates the method using data on Down's
syndrome from Australia and Sweden. His appli-
cation is essentially a two-sided sequential test,
assumes an underlying Poisson distribution, and
tests the simple hypothesis 0 = 00 against the
simple alternative 0 = K0O. He discusses the
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relations between sample size,K and the expected
number of samples required for a decision for
Type I and Type II error rates of 10%. Morton
states his preference for the Wald scheme to the
cumulative sum method (discussed below), citing
greater flexibility and ease of interpretation.
Nevertheless, it seems unlikely that the Wald
scheme could be optimal since it is not specifically
directed at the alternative hypothesis of interest,
i.e., a shift in the parameter during the sampling
process.
The other approach, advocated by Weatherall

and Haskey (9), comes out of the continuous in-
spection schemes used for quality control in in-
dustry and pioneered by Page (10) and Barnard
(11). In its simplest form, the cumulative sum
method consists ofrecording the cumulative sums

r

SrX=E (Xi-k)
i = 1

where k is often the expected value ofX under Ho.
Sr is set to zero if it becomes negative. Ho is
rejected when the cumulative sum reaches some
predetermined value, h. Again, one wants to de-
tect a shift quickly but not often claim a shift
when none has occurred; to this end one wants the
expected value of r at rejection to be small under
H1 and large under Ho. The relevant relations
between h, k, sample size and these expected run
lengths are discussed, for the Poisson and normal
distributions, by Ewan and Kemp (12). A deep
discussion of the general change point problem
has been given by Kander and Zacks (13).

It is important that we improve our ability to
predict the likely impact ofan increased mutation
rate and that we measure that impact in ways
useful to decision makers. If our predictions are
reliable and alarming, society would be advised
to expend resources on controlling mutation
rates; if our predictions are unreliable or suggest
little immediate impact, resources are probably
better spent on other pressing social problems. It

is hoped that a development of the concept of
mutation component may help us in these predic-
tions. The other problem, of detecting an increase
in the mutation rate when it occurs, is of equal
importance and was discussed briefly from a sta-
tistical point of view.
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